Follow us :
Macro shot of a mosquito on human skin sucking blood

Mosquito Microbiome Interactions

Lead Investigator(s)

Dr. Jewelna E.B. Akorli

Mosquito Microbiome Interactions

Dr. Jewelna E.B. Akorli

Lead Investigator

Dr. Jewelna E.B. Akorli

Project Summary

Project Background

Disease transmission blocking is an expanding area of vector-borne disease research which seeks to understand the mechanisms that disrupt the development and limit the transmission of parasite from vector to human host. Some micro-organisms associated with mosquitoes demonstrate anti-parasitic effects independent of the mosquito immune system. Understanding this mechanism could help propose bacteria-mediated strategies for vector and disease control.

Research Areas

Research in the MoziBiome lab focuses on:

  • clarifying the mechanisms involved in the inter-relationship between mosquito microbiota and mosquito-borne parasites,
  • characterising mosquito-associated micro-organisms (bacteria, fungi, viruses, protists) of mosquitoes to identify the most effective combination of these for pathogen transmission-blocking,
  • understanding bionomics and acquisition of microbes by mosquito vectors for novel disease control approaches,
  • how micro-organisms influence variations in vector competence in natural mosquito populations.
Ongoing-Activities
Survey of Anopheles mosquitoes across Ghana to study Microsporidia MB prevalence and diversity
Lab activities

Disease transmission blocking is an expanding area of vector-borne disease research which seeks to understand the mechanisms that disrupt the development and limit the transmission of parasite from vector to human host. Some micro-organisms associated with mosquitoes demonstrate anti-parasitic effects independent of the mosquito immune system. Understanding this mechanism could help propose bacteria-mediated strategies for vector and disease control.

Research in the MoziBiome lab focuses on:

  • clarifying the mechanisms involved in the inter-relationship between mosquito microbiota and mosquito-borne parasites,
  • characterising mosquito-associated micro-organisms (bacteria, fungi, viruses, protists) of mosquitoes to identify the most effective combination of these for pathogen transmission-blocking,
  • understanding bionomics and acquisition of microbes by mosquito vectors for novel disease control approaches,
  • how micro-organisms influence variations in vector competence in natural mosquito populations.

Survey of Anopheles mosquitoes across Ghana to study Microsporidia MB prevalence and diversity
Lab activities
Key Publication
  1. Akorli, J., Akorli, E.A., Tetteh, S.N.A. et al.Microsporidia MB is found predominantly associated with Anopheles gambiaes and Anopheles coluzzii in Ghana. Sci Rep 2021; 11, 18658. doi: 10.1038/s41598-021-98268-2
  2. Dada N, Jupatanakul N, Minard G, Short SM, Akorli J and Villegas LM. Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium. Microbiome2021; 9(1):36. doi: 1186/s40168-020-00987-7
  3. Ezemuoka LC, Akorli EA, Aboagye-Antwi F and Akorli J. Mosquito midgut Enterobacter cloacae and Serratia marcescens affect the fitness of adult female Anopheles gambiael. PLoS One 2020; 15(9): e0238931.doi:10.1371/journal.pone.0238931
  4. Akorli J, Namaali PA, Ametsi GW, Egyirifa RK and Pels NAP. Generational conservation of composition and diversity of field-acquired midgut microbiota in Anopheles gambiae sensu lato during colonization in the laboratory. Parasit & Vect 2019;12(27). doi:1186/s13071-019-3287-0
  5. Akorli J, Gendrin M, Pels NAP, Yeboah-Manu D, Christophides GK, and Wilson MD. Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana. PLoS One 2016; 11(6): e0157529. doi:1371/journal.pone.0157529
More publications are available at:

https://www.ncbi.nlm.nih.gov/myncbi/1PMDyLk0dCtAke/bibliography/public/
Team Members
Dr. Nana Efua Andoh
Esinam A. Akorli
Richardson K. Egyirifa
Seraphim N.A. Tetteh
Sampson Otoo
Funders

Wellcome Trust Intermediate Fellowship. (220737/Z/20/Z). PI.

Elucidating the mechanisms and functions of bacterial-derived mediators on Plasmodium falciparum. (2021-2026).

ANTI-VeC African Anopheles Symbiont Survey Award. (AV/AASS/009). PI.

Diversity of Microsporidia MB, their co-occurrence and dynamics with bacterial communities associated with Anopheles mosquitoes. (2021-2022)